1. 主題學習:循序漸進介紹人工智慧領域中數據處理、數據標記、神經網路、機器學習、物件辨識等重要概念。
2. 輕鬆入門:結合公開、免費與好用的開源工具與網頁,引導讀者輕鬆進入機器學習的領域。
3. 時下最夯:介紹目前人工智慧趨勢 — 邊緣運算,並說明雲與端如何相互依存與協同作業。
4. 生活應用:藉由 AI 加速棒的實作,帶領讀者體驗AI的落實應用。
MOSME行動習一點通:
使用「MOSME行動習一點通」,登入會員與書籍密碼,可線上閱讀、觀看範例影片、下載補充資料與範例程式。
‧ 診斷:可線上練習本書題目,檢視學習成效。
‧ 評量:每次實作經創客師核可,可取得創客學習力認證,累積學習歷程。
‧ 影音:於學習資源「影音教學」專區,可觀看範例操作影片。
‧ 擴增:線上提供相關補充資料,供自主學習或教學參考之用。
‧ 加值:附書中範例程式,方便讀者下載使用。

chapter 1 打開人工智慧之門
1-1 談談AlphaGo
1-2 人工智慧名詞的由來
1-3 人工智慧所需具備的能力
1-4 人工智慧的趨勢
1-5 人工智慧並非獨立存在
1-6 AI 的學習方法
1-7 實作介紹:Google Colaboratory
chapter 2 數據蒐集與處理
2-1 BIG DATA與OPEN DATA
2-2 資料的類別
2-3 資料蒐集與清理
2-4 實際範例說明
2-5 實作介紹:標記(Label)工具
chapter 3 機器學習
3-1 機器學習的種類
3-2 機器學習的演算法
3-3 自動化機器學習
3-4 實作介紹:Kneron AI Dongle運算棒
chapter 4 深度學習
4-1 什麼是神經網路?
4-2 深度學習的經典 — CNN卷積網路
4-3 ConvNetJS
4-4 實作介紹:Kneron Academy 進階
chapter 5 物件辨識
5-1 工作分類與名詞解釋
5-2 要回答的問題
5-3 如何做物件偵測與分類判定
5-4 其他注意事項
chapter 6 終端裝置的人工智慧
6-1 什麼是終端AI?
6-2 AI加速棒
6-3 人機介面的互動
6-4 智慧門鎖
6-5 建構人臉辨識的演算法
6-6 隱私權的保護
6-7 神經網路處理器的傳輸
chapter 7 AI專案與加速棒應用
7-1 建構一個AI專案
7-2 多樣化的AI APP應用程式
7-3 人臉辨識實作—智慧門鎖應用的核心
7-4 多物件辨識實作—流量計算應用的核心
7-5 製作自定義分類模型
7-6 總結